首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5062篇
  免费   891篇
  国内免费   955篇
化学   5118篇
晶体学   73篇
力学   159篇
综合类   53篇
数学   111篇
物理学   1394篇
  2024年   3篇
  2023年   94篇
  2022年   191篇
  2021年   311篇
  2020年   375篇
  2019年   302篇
  2018年   255篇
  2017年   318篇
  2016年   395篇
  2015年   364篇
  2014年   438篇
  2013年   512篇
  2012年   447篇
  2011年   463篇
  2010年   290篇
  2009年   365篇
  2008年   295篇
  2007年   275篇
  2006年   223篇
  2005年   198篇
  2004年   161篇
  2003年   116篇
  2002年   71篇
  2001年   59篇
  2000年   60篇
  1999年   32篇
  1998年   31篇
  1997年   40篇
  1996年   31篇
  1995年   20篇
  1994年   19篇
  1993年   23篇
  1992年   14篇
  1991年   22篇
  1990年   12篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   17篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有6908条查询结果,搜索用时 334 毫秒
81.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   
82.
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.  相似文献   
83.
Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.  相似文献   
84.
Organoid is an emerging frontier technology in the field of life science, in which pluripotent stem cells or tissue-derived differentiated/progenitor cells form 3D structures according to their multi-directional differentiation potential and self-assembly ability. Nowadays, although various types of organoids are widely investigated, their construction is still complicated in operation, uncertain in yield, and poor in reproducibility for the structure and function of native organs. Constructing a biomimetic microenvironment for stem cell proliferation and differentiation in vitro is recognized as a key to driving this field. This review reviews the recent development of engineered biomimetic microenvironments for organoids. First, the composition of the matrix for organoid culture is summarized. Then, strategies for engineering the microenvironment from biophysical, biochemical, and cellular perspectives are discussed in detail. Subsequently, the newly developed monitoring technologies are also reviewed. Finally, a brief conclusion and outlook are presented for the inspiration of future research.  相似文献   
85.
Nowadays, desulfurization of fuel oil has raised concern globally because of strict industrial and environmental legislations. Albeit hydrodesulfurization (HDS) has been extensively used in oil refineries to produce low sulfur oil (< 10 ppm) but not been proven as effective method for the removal of dibenzothiophene (DBT), benzothiophene (TH) and their derivatives. Subsequently, adsorptive desulfurization (ADS) and oxidative desulfurization (ODS) methods have been developed to achieve high removal efficiency. In the past decade, metal–organic frameworks (MOFs) and its composites as oxidative catalysts, as well as adsorbents, have attracted the researchers owing to high surface area, tunable properties, and reusable. The present review comprises use of MOFs and their composites for the removal of sulfur from fuel oil via ODS and ADS processes. Additionally, physicochemical properties of MOFs, mechanism, pros and cons of both process, regeneration, and future challenges have been discussed briefly. Moreover, current limitations and future prospective are also discussed.  相似文献   
86.
Due to its outstanding physical properties, CdTe is used to fabricate high efficiency solar cells. However, its high work function poses a challenge, and hence, to fabricate an efficient CdTe-based solar cell, Cu-doping may be useful. Here, we present the role of temperature-dependent Cu-doping in radio frequency sputter-deposited CdTe films and the related changes occurring in their optical, electrical, structural and microstructural properties. For instance, Cu-doping at different temperatures leads to an increase in the grain size and a reduction in the optical reflectance with increasing temperature. In addition, Kelvin probe force microscopy measurements reveal that the work function is found to be smaller corresponding to the annealing temperature of 473 K, whereas resistivity measurements show that it decreases with increasing temperature (the lowest value of resistivity is found to be 1.8 × 10−2 Ω-cm). To understand the electronic structure of CdTe before and after Cu-doping, we have carried out first-principles density functional theory (DFT) simulation, which reveals a strong hybridization among Cu, Cd and Te atoms. This study paves the way to fabricate efficient Cu-doped CdTe-based solar cells.  相似文献   
87.
全无机钙钛矿太阳电池因其热稳定性好、载流子迁移率高,可用于制备叠层电池等优点备受关注。随着人们对全无机钙钛矿太阳电池的深入研究和制备工艺的持续优化,全无机钙钛矿太阳电池的光电转换效率已经突破19%。然而,全无机钙钛矿材料相稳定性较差,这使得实现全无机钙钛矿太阳电池在空气环境下制备和长期使用面临巨大挑战。众多科研工作者通过分析全无机钙钛矿材料的相变机制,有针对性地提出了包括添加剂工程、界面工程和开发全无机钙钛矿量子点电池等多种方式来改善全无机钙钛矿太阳电池的长期稳定性。本综述从全无机钙钛矿材料与电池的结构、活性层制备方法和稳定性研究三个方面总结了近年来关于全无机钙钛矿太阳电池的研究进展。  相似文献   
88.
王睿卿  隋升 《电化学》2021,27(6):595
采用CCS法(catalyst coated substrate)构建铂纳米颗粒(Pt-NPs)和铂纳米线(Pt-NWs)双层催化层结构,分析其对单电池电化学性能的影响。对于富铂/贫铂双层铂纳米颗粒结构,靠近质子交换膜侧的富铂层中致密的铂颗粒结构能促进ORR速率,而靠近气体扩散层一侧的具有更高的孔隙率和平均孔尺寸的贫铂层,有利于反应气体的传输和扩散,当贫富铂层铂载量比为1:2时,单电池测试表现出最优性能,在0.6 V时的电流密度达到了1.05 A·cm-2,峰值功率密度为0.69 W·cm-2,较常规单层催化层结构提升了21%。在以Pt-NPs作为基底层时生长Pt-NWs时,得到了梯度分布的双层结构。铂颗粒的存在促进了铂前驱体的还原,并为新形成的铂原子提供了沉积位置。在Pt-NPs基底上生长的Pt-NWs具有更均匀的分布以及更致密的绒毛结构,并且自然形成了一种梯度分布。优化后的Pt-NWs催化层在0.6 V时的电流密度提高了21%。含有双层催化层结构的膜电极具有更高的催化剂利用率,对阴极催化层结构的优化和制备提供了新思路。  相似文献   
89.
《印度化学会志》2021,98(9):100137
Numerous studies confirm that three dimensional porous Cu–Sn (3DP Cu–Sn) anode possesses good application prospect in light of its desirable electrochemical performance on lithium ion half cells, but there are a few related systematic researches on lithium ion full cells until now, which is indispensable before its commercialization. Herein, the effects of galvanostatic charge-discharge voltage range on the cycling stability of 3DP Cu–Sn anode for lithium ion full cells are investigated systematically. The results show that the suitable charge-discharge voltage range plays a key role in improving the reversible capacity and cycling stability of the 3DP Cu–Sn||LiCoO2 full cell, which is closely related to maintaining the electrode structure stable by controlling the amount of Li+ extracted and inserted. Especially, in the voltage range of 1.2–3.9 ​V, the full cell exhibits remarkably improved electrochemical properties with the high initial reversible capacity of 2.71 ​mAh cm−2 and 71.95% capacity retention upon 80 cycles. We believe that this work can provide a significant reference for the practical application of porous Sn-based anodes.  相似文献   
90.
总结了非平衡溶剂化新理论和在量子化学软件Q-Chem中基于含时密度泛函理论(TD-DFT)实现溶剂效应下计算电子吸收和发射光谱的数值解方法.采用该方法计算了染料敏化太阳能电池(DSSCs)中三苯胺型有机染料■在真空和乙腈溶剂中的电子结构与光谱性质,研究发现,π共轭桥上碳碳双键的个数和溶剂效应会促进光电转换.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号